funcy documentation
Release 1.10.3

Alexander Schepanovski

Jun 30, 2018

Contents

1 Overview

2 Cheatsheet

3 Extended function semantics
4 Python 3 support
5 Sequences

6 Collections

7 Functions

8 Decorators

9 Flow

10 String utils

11 Calculation

12 Type testing

13 Objects

14 Debugging

15 Primitives

Python Module Index

11

13

23

29

33

37

41

43

45

47

49

53

55

funcy documentation, Release 1.10.3

Funcy is designed to be a layer of functional tools over python.

Special topics:

Contents 1

funcy documentation, Release 1.10.3

2 Contents

CHAPTER 1

Overview

Start with:

’pip install funcy

Import stuff from funcy to make things happen:

’from funcy import whatever, you, need

Merge collections of same type (works for dicts, sets, lists, tuples, iterators and even strings):

merge (colll, coll2, coll3, ...)
join(colls)
merge_with (sum, dictl, dict2, ...)

Walk through collection, creating its transform (like map but preserves type):

walk (str.upper, {'a', 'b'}) # {'A'", 'B'}

walk (reversed, {'a': 1, 'b': 2}) # {1: 'a', 2: 'b'}
walk_keys (double, {'a': 1, 'b': 2}) # {'aa': 1, 'bb': 2}
walk_values (inc, {'a': 1, 'b': 2}) # {'a': 2, 'b': 3}

Select a part of collection:

select (even, {1,2,3,10,20}) # {(2,10,20}
select(r'"a', ('a','b','ab','ba')) # ('a', 'ab')
select_keys(callable, {str: '', None: None}) # {str: '’}
compact ({2, None, 1, 0}) # (1,2}

Manipulate sequences:

take (4, iterate (double, 1)) # [1, 2, 4, 8]
first (drop (3, count (10))) # 13

remove (even, [1, 2, 3]) # [1, 3]

(continues on next page)

funcy documentation, Release 1.10.3

(continued from previous page)

concat ([1, 2], [5, 6]) # [1, 2, 5, 6]
cat (map (range, range(4))) # [0, 0, 1, 0, 1, 2]
mapcat (range, range (4)) # same
flatten (nested_structure) # flat_1list
#

distinct ('abacbhdd") list ('abcd')

S

split (odd, range (5)) (r1, 37, [0, 2, 4])

split_at (2, range(5)) # ([0, 1], [2, 3, 4])
group_by (mod3, range (5)) # (0: [0, 3], 1: [1, 4], 2: [2]}
partition (2, range(5)) # [[0, 1], [2, 3]]

B

chunks (2, range(5)) (ro, 17, (2, 31, [4]]
pairwise (range (5)) # iter: [0, 1], [1, 2],

And functions:

partial (add, 1) # inc

curry (add) (1) (2) # 3

compose (inc, double) (10) # 21
complement (even) # odd
all_fn(isa(int), even) # 1is_even_int

one_third = rpartial (operator.div, 3.0)
has_suffix = rcurry(str.endswith)

Create decorators easily:

@decorator

def log(call):
print call._func. name , call._args
return call ()

Abstract control flow:

walk_values(silent (int), {'a': '"1', 'b': 'no'})
=> {'a': 1, 'b': None}

@once
def initialize():

" n

with suppress (OSError) :
os.remove ('some.file')

@ignore (ErrorRateExceeded)

@limit_error rate(fails=5, timeout=60)
Qretry(tries=2, errors=(HttpError, ServiceDown))
def some_unreliable_action(...):

" n

class MyUser (AbstractBaseUser) :
@cached property
def public_phones (self):
return self.phones.filter (public=True)

Ease debugging:

4 Chapter 1. Overview

funcy documentation, Release 1.10.3

squares = {tap(x, 'x"): tap(x * x, 'x"2'") for x in [3, 4]}
x: 3

x"2: 9

#

@print_exits
def some_func(...):

" n

@log _calls(log.info, errors=False)
@log_errors (log.exception)

def some_suspicious_function(...):
n n

with print_durations('Creating models'):
Model.objects.create(...)
#

10.2 ms in Creating models

funcy documentation, Release 1.10.3

6 Chapter 1. Overview

CHAPTER 2

Cheatsheet

Hover over function to get its description. Click to jump to docs.

2.1 Sequences

Create count () cycle () repeat () repeatedly () iterate() re_all() re_iter()
Access first () second() last () nth() some () take()

Slice take () drop() rest() butlast() takewhile() dropwhile() split_at/()
split_by()

Trans- map () mapcat () keep () pluck () pluck_attr () invoke ()

form

Filter filter () remove () keep () distinct () where () without ()

Join cat () concat () flatten () mapcat () interleave () interpose ()

Parti- chunks () partition() partition_by () split_at () split_by ()

tion

Group split () count_by () count_reps () group_by () group_by_keys ()

group_values ()

Aggre- ilen() reductions() sums() all() any() none() one() count_by/()
gate count_reps ()

Iterate pairwise () with _prev() with next () izip_values /() izip _dicts ()
tree_leaves () tree_nodes ()

funcy documentation, Release 1.10.3

2.2 Collections

Join merge () merge_with () join() join_with ()

Trans- walk () walk_keys () walk_values ()

form

Filter select () select_keys () select_values () compact ()

Dicts * | flip() zipdict () pluck () where() itervalues () iteritems() izip values ()
izip_dicts () project () omit ()

Misc empty () get_in() set_in () update_in()

2.3 Functions

Create identity () constantly() func_partial() partial() rpartial() iffy()
caller () re_finder () re_tester()

Trans- complement () iffy () autocurry () curry () rcurry ()

form

Com- compose () rcompose () Jjuxt() all_fn() any_fn() none_fn() one_fn()

bine some_fn ()

2.4 Other topics

Content all() any() none() one () is_distinct ()

tests

Typetests | isa() is_iter() is_list() is_tuple() is_set () is_mapping() is_seq()
is_seqcoll () is_seqcont () iterable ()

Decora- decorator wraps unwrap autocurry ()

tors

Control once () once_per () once_per_args () collecting() joining()

flow post_processing()

Error retry() silent() ignore() suppress() limit_error_rate() fallback/()

handling raiser () reraise ()

Debug- tap () log_calls () log_enters () log_exits () log_errors ()

ging log _durations () log_iter_durations ()

Caching memoize () cache () cached _property () make_lookuper () silent_lookuper ()

Regexes re _find() re_test () re_all() re_iter () re_finder () re_tester()

Strings cut_prefix () cut_suffix() str_join()

Objects cached _property () monkey () invoke () pluck_attr () namespace LazyObject

Primi- isnone () notnone() inc () dec() even () odd()

tives

8 Chapter 2. Cheatsheet

CHAPTER 3

Extended function semantics

Many of funcy functions expecting predicate or mapping function as an argument can take something uncallable
instead of it with semantics described in this table:

fpassed | Function Predicate

None identity bool

string re_finder (f) re_tester (f)

int or slice | itemgetter (f) itemgetter (f)
mapping lambda x: f[x] lambda x: f[x]
set lambda x: x in f | lambda x: x in f

3.1 Supporting functions

Here is a full list of functions supporting extended function semantics:

Group Functions

Sequence transformation | map (), imap (), keep (), ikeep (), mapcat (), imapcat ()

Sequence filtering filter(), ifilter(), remove (), iremove (), distinct (),
idistinct ()

Sequence splitting dropwhile (), takewhile (), split (), split_by ()

Sequence chunking group_by (), count_by (), partition by (), ipartition_by/()

Collection transforma- | walk (), walk_keys (), walk values()

tion

Collection filtering select (), select_keys (), select_values ()

Content tests all(),any(),none(),one(),some(),is_distinct ()

Function logic all_fn(),any_fn(),none_fn(),one_fn(), some_fn/()

Function tools iffy (), compose (), rcompose (), complement (), juxt (), ijuxt ()

funcy documentation, Release 1.10.3

10 Chapter 3. Extended function semantics

CHAPTER 4

Python 3 support

Funcy works with python 3 as of version 0.9. However, it has slightly different interface. It follows python 3 conven-
tion of “iterator by default” for utilities like map (), filter () and such. When funcy has two versions of utility
(list and iterator) they are named like keep () and ikeep () in python 2 and 1keep () and keep () in python 3.
You can look up a full table of differently named functions below.

4.1 Writing cross-python code

You can do that two ways: writing python 2 code that works in python 3 or vice versa. You can import python 2 or 3
style functions from funcy.py2 or funcy.py3:

from funcy.py2 import whatever, you, need

write python 2 style code here

from funcy.py3 import whatever, you, need

write python 3 style code here

You can even import map (), imap (), filter(),ifilter(),zip () and izip ().

11

https://docs.python.org/2/library/functions.html#zip
https://docs.python.org/2/library/itertools.html#itertools.izip

funcy documentation, Release 1.10.3

4.2 Full table of python dependent function names

Python 2 / list

Python 2 / iterator

Python 3/ list

Python 3 / iterator

map () imap () Imap () map ()
filter() ifilter() 1filter () filter()
zip () izip () 1zip () zip ()
remove () iremove () lremove () remove ()
keep () ikeep () lkeep () keep ()
without () iwithout () lwithout () without ()
concat () iconcat () lconcat () concat ()
cat () icat () lcat () cat ()
flatten () iflatten() 1flatten() flatten ()
mapcat () imapcat () lmapcat () mapcat ()
distinct () idistinct () ldistinct () distinct ()
split () isplit () lsplit () split ()
split_at() isplit_at () lsplit_at () split_at()
split_by () isplit_by () lsplit_by () split_by()
partition() ipartition () lpartition () partition()
chunks () ichunks () lchunks () chunks ()

partition _by()

ipartition_by ()

lpartition_by ()

partition _by()

reductions ()

ireductions ()

lreductions ()

reductions ()

sums () isums () lsums () sums ()

Jjuxt () 1juxt () 1juxt () Jjuxt ()

where () iwhere () lwhere () where ()

pluck () ipluck () lpluck () pluck ()

pluck_attr() ipluck_attr() lpuck_attr () pluck_attr()

invoke () iinvoke () linvoke () invoke ()

- izip_values () - zip_values ()

- izip_dicts () - zip_dicts ()
Contents:

12

Chapter 4. Python 3 support

https://docs.python.org/2/library/functions.html#zip
https://docs.python.org/2/library/itertools.html#itertools.izip
https://docs.python.org/3/library/functions.html#zip

CHAPTER B

Sequences

5.1 Generate

repeat (item[, n])

This functions are aimed at manipulating finite and infinite sequences of values. Some functions have two flavors: one
returning list and other returning possibly infinite iterator, the latter ones follow convention of prepending i before
list-returning function name.

When working with sequences, see also itertools standard module. Funcy reexports and aliases some functions
from it.

Makes an iterator yielding item for n times or indefinitely if n is omitted. repeat () simply repeat given

value, when you need to reevaluate something repeatedly use repeatedly () instead.

When you just need a length n list or tuple of item you can use:

[item] * n
or
(item,) * n

count (start=0, step=1)

Makes infinite iterator of values: start, start + step, start + 2xstep,

Could be used to generate sequence:

imap (lambda x: x %% 2, count (1))
-> 1, 4, 9, 16,

Or annotate sequence using zip () or izip ():

zip (count (), 'abcd')
-> [0, 'a'), (1, 'B'), (2, 'c'), (3, 'd')]

(continues on next page)

13

https://docs.python.org/2/library/itertools.html#module-itertools
https://docs.python.org/2/library/functions.html#zip
https://docs.python.org/2/library/itertools.html#itertools.izip

funcy documentation, Release 1.10.3

(continued from previous page)

print code with BASIC-style numbered lines
for line in izip(count (10, 10), code.splitlines()):

)

print ' ' % line

See also enumerate () and original itertools.count () documentation.

cycle (seq)
Cycles passed seq indefinitely returning its elements one by one.

Useful when you need to cyclically decorate some sequence:

for n, parity in izip(count (), cycle(['even', 'odd'])):
print ' is "% (n, parity)

repeatedly (f[, n])

Takes a function of no args, presumably with side effects, and returns an infinite (or length n if supplied) iterator
of calls to it.

For example, this call can be used to generate 10 random numbers:

repeatedly (random.random, 10)

Or one can create a length n list of freshly-created objects of same type:

repeatedly (list, n)

iterate (f, x)
Returns an infinite iteratorof x, £ (x), f£(f(x)), ... etc.

Most common use is to generate some recursive sequence:

iterate (inc, 5)
->5, 6, 7, 8 9,

iterate (lambda x: x * 2, 1)
->1, 2, 4, 8, 16,

step = lambda ((a, b)): (b, a + b)
imap (first, iterate(step, (0, 1)))
->o0, 1, 1, 2, 3, 5, 8, ... (Fibonacci sequence)

5.2 Manipulate

This section provides some robust tools for sequence slicing. Consider Slicings or itertools.islice () for more
generic cases.

take (n, seq)
Returns a list of the first n items in the sequence, or all items if there are fewer than n.
take (3, [2, 3, 4, 51) # [2, 3, 4]
take (3, count (5)) # [5, 6, 7]
take (3, 'ab'") # ['a', 'b']

drop (n, seq)
Skips first n items in the sequence, returning iterator yielding rest of its items.

14 Chapter 5. Sequences

https://docs.python.org/2/library/functions.html#enumerate
https://docs.python.org/2/library/itertools.html#itertools.count
https://docs.python.org/2/reference/expressions.html#slicings
https://docs.python.org/2/library/itertools.html#itertools.islice

funcy documentation, Release 1.10.3

drop (3, [2, 3, 4, 51) # iter([5])
drop (3, count (5)) # count (8)
drop (3, 'ab') # empty iterator

first (seq)

Returns the first item in the sequence. Returns None if the sequence is empty. Typical usage is choosing first of
some generated variants:

Get a text message of first failed validation rule
fail = first (rule.text for rule in rules if not rule.test (instance))

Use simple pattern matching to construct form field widget
TYPE_TO_WIDGET (

[lambda f: f.choices, lambda f: Select (choices=f.choices)],
[lambda f: f.type == 'int', lambda f: TextInput (coerce=int)],
[lambda f: f.type == 'string', lambda f: TextInput ()],

[lambda f: f.type == 'text', lambda f: Textareaf()],

[lambda f: f.type == 'boolean', lambda f: Checkbox (f.label)],

)
return first (do(field) for cond, do in TYPE_TO_WIDGET if cond(field))

Other common use case is passing to map () or imap (). See last example in iterate () for such example.

second (seq)

Returns the second item in given sequence. Returns None if there are less than two items in it.

Could come in handy with sequences of pairs, e.g. dict.items (). Following code extract values of a dict
sorted by keys:

’map(second, sorted (some_dict.items ()))

And this line constructs an ordered by value dict from a plain one:

’OrderedDict(sorted(plain_dict.items(), key=second))

nth (n, seq)

Returns nth item in sequence or None if no one exists. Items are counted from 0, so it’s like indexed access but
works for iterators. E.g. here is how one can get 6th line of some_file:

nth (5, repeatedly (open('some_file') .readline))

last (seq)

Returns the last item in the sequence. Returns None if the sequence is empty. Tries to be efficient when
sequence supports indexed or reversed access and fallbacks to iterating over it if not.

rest (seq)

Skips first item in the sequence, returning iterator starting just after it. A shortcut for drop (1, seqg).

butlast (seq)

Returns an iterator of all elements of the sequence but last.

ilen (seq)

Calculates length of iterator. Will consume it or hang up if it’s infinite.

Especially useful in conjunction with filtering or slicing functions, for example, this way one can find common
start length of two strings:

ilen(takewhile (lambda (x, y): x == vy, zip(sl, s2)))

5.2. Manipulate 15

https://docs.python.org/2/library/itertools.html#itertools.imap
https://docs.python.org/2/library/stdtypes.html#dict.items

funcy documentation, Release 1.10.3

5.3 Unite

concat (*segs)
iconcat (*segs)
Concats several sequences into one. iconcat () returns an iterator yielding concatenation.

iconcat () is an alias for itertools.chain ().

cat (seqgs)

icat (segs)
Concatenates passed sequences. Useful when dealing with sequence of sequences, see concat () or
iconcat () tojoin just a few sequences.

Flattening of various nested sequences is most common use:

Flatten two level deep 1list
cat (list_of_lists)

Get a flat html of errors of a form
errors = icat(inline.errors () for inline in form)
error_text = '
'.join(errors)

Brace expansion on product of sums

(a + b) (t + pg)x == atx + apgx + btx + bpgx

terms = [['a', 'D'], ['t', 'pg'l, ['x']]

map (cat, product (xterms))

[list('atx'), list('apgx'), list('btx'), list('bpgx')]

icat () isanalias for itertools.chain.from iterable ().

flatten (seq, follow=is_seqcont)

iflatten (seq, follow=is_seqcont)
Flattens arbitrary nested sequence of values and other sequences. fol1low argument determines whether to un-
pack each item. By default it dives into lists, tuples and iterators, see i s_segcont () for further explanation.

See also cat () or icat () if you need to flatten strictly two-level sequence of sequences.

tree_leaves (root, follow=is_seqcont, children=iter)
itree_leaves (ro0t, follow=is_seqcont, children=iter)
A way to list or iterate over all the tree leaves. E.g. this is how you can list all descendants of a class:

’tree_leaves(Base, children=type.__subclasses__, follow=type.__subclasses__)

tree_nodes (root, follow=is_seqcont, children=iter)
itree_nodes (root, follow=is_seqcont, children=iter)
A way to list or iterate over all the tree nodes. E.g. this is how you can list all classes in hierarchy:

tree_nodes (Base, children=type.__subclasses__, follow=type.__subclasses__)

interleave (*segs)

Returns an iterator yielding first item in each sequence, then second and so on until some sequence ends. Num-
bers of items taken from all sequences are always equal.

interpose (sep, seq)
Returns an iterator yielding elements of seq separated by sep.

Helpful when str. join () is not good enough. This code is a part of translator working with operation node:

16 Chapter 5. Sequences

https://docs.python.org/2/library/itertools.html#itertools.chain
https://docs.python.org/2/library/itertools.html#itertools.chain.from_iterable
https://docs.python.org/2/library/stdtypes.html#str.join

funcy documentation, Release 1.10.3

def visit_BoolOp(self, node):
... do generic visit

node.code = mapcat (translate, interpose (node.op, node.values))

5.4 Transform and filter

Most of functions in this section support Extended function semantics. Among other things it allows to rewrite exam-
plesusing re_tester () and re_finder () tighter.

map (f, seq)
imap (f, seq)
Extended versions of map () and imap ().

filter (pred, seq)
ifilter (pred, seq)
Extended versions of filter () and ifilter ().

remove (pred, seq)

iremove (pred, seq)
Return a list or an iterator of items of seq that result in false when passed to pred. The results of this functions
complement results of standard filter () and ifilter ().

A handy use is passing re_tester () result as pred. For example, this code removes any whitespace-only
lines from list:

’remove(re_tester('A\s+$'), lines)

Note, you can rewrite it shorter using Extended function semantics:

’remove('A\s+$', lines)

keep ([f], seq)

ikeep ([f], seq)
Maps seq with given function and then filters out falsy elements. Simply filters seq when £ is absent. In fact
these functions are just handy shortcuts:

keep (£, seq) == filter (bool, map(f, seq))
keep (seq) == filter (bool, seq)

ikeep(f, seq) == ifilter (bool, imap(f, seq))
ikeep (seq) == ifilter (bool, seq)

Natural use case for keep () is data extraction or recognition that could eventually fail:

Extract numbers from words
keep (re_finder (r'\d+'), words)

Recognize as many colors by name as possible
keep (COLOR_BY_NAME.get, color_names)

An iterator version can be useful when you don’t need or not sure you need the whole sequence. For example,
youcanuse first () - ikeep () combo to find out first match:

first (ikeep (COLOR_BY_NAME.get, color_name_candidates))

5.4. Transform and filter 17

https://docs.python.org/2/library/functions.html#map
https://docs.python.org/2/library/itertools.html#itertools.imap
https://docs.python.org/2/library/functions.html#filter
https://docs.python.org/2/library/itertools.html#itertools.ifilter
https://docs.python.org/2/library/itertools.html#itertools.ifilter

funcy documentation, Release 1.10.3

Alternatively, you can do the same with some () and imap ().

One argument variant is a simple tool to keep your data free of falsy junk. This one returns non-empty descrip-
tion lines:

keep (description.splitlines())

Other common case is using generator expression instead of mapping function. Consider these two lines:

keep (f.name for f in fields) # sugar generator expression
keep (attrgetter ('name'), fields) # pure functions

mapcat (f, *segs)

imapcat (f, *segs)
Maps given sequence(s) and then concatenates results, essentially a shortcut for cat (map (£, =*segs)).
Come in handy when extracting multiple values from every sequence item or transforming nested sequences:

Get all the lines of all the texts in single flat 1list
mapcat (str.splitlines, bunch_of_texts)

Extract all numbers from strings
mapcat (partial (re_all, r'\d+'), bunch_of_strings)

without (seq, *items)
iwithout (seq, *items)

Returns sequence with items removed, preserves order. Designed to work with a few items, this allows
removing unhashable objects:

’no_empty_lists = without (lists, [1]) ‘

In case of large amount of unwanted elements one can use remove ():

’remove(set(unwanted_elements), seq) ‘

Or simple set difference if order of sequence is irrelevant.

5.5 Split and chunk

split (pred, seq)
isplit (pred, seq)

Splits sequence items which pass predicate from the ones that don’t, essentially returning a tuple
filter (pred, seq), remove (pred, seq).

For example, this way one can separate private attributes of an instance from public ones:

’private, public = split (re_tester('”_"'), dir(instance)) ‘

Split absolute and relative urls using extended predicate semantics:

’absolute, relative split (r'~http://', urls) ‘

split_at (n, seq)
isplit_at (n, seq)
Splits sequence at given position, returning a tuple of its start and tail.

split_by (pred, seq)

18 Chapter 5. Sequences

https://docs.python.org/2/library/itertools.html#itertools.imap

funcy documentation, Release 1.10.3

isplit_by (pred, seq)
Splits start of sequence, consisting of items passing predicate, from the rest of it. Works similar to

takewhile (pred, seq), dropwhile (pred, seq), but returns lists and works with iterator seqg
correctly:

split_by (bool, iter([-2, -1, 0, 1, 21))
(-2, -1], [0, 1, 2]

takewhile ([pred], seq)
Yeilds elements of seq as long as they pass pred. Stops on first one which makes predicate falsy:

Extract first paragraph of text
takewhile (re_tester(r'\S'), text.splitlines())

Build path from node to tree root
takewhile (bool, iterate(attrgetter('parent'), node))

dropwhile ([pred], seq)

This is a mirror of takewhile (). Skips elements of given sequence while pred is true and yields the rest of
it:

Skip leading whitespace-only lines
dropwhile (re_tester ('"\s+$'), text_lines)

group_by (f, seq)
Groups elements of seq keyed by the result of £. The value at each key will be a list of the corresponding
elements, in the order they appear in seq. Returns defaultdict (1ist).

stats = group_by(len, ['a', 'ab', 'b'])
stats[1] # —> ['a', 'b']

stats[2] # —> ['ab']

stats[3] # -> [], since stats is defaultdict

One can use split () when grouping by boolean predicate. See also itertools.groupby ().

group_by_keys (get_keys, seq)
Groups elements of seq having multiple keys each into defaultdict (1ist). Can be used to reverse
grouping:

posts_by_tag = group_by_keys(attrgetter(tags), posts)
sentences_with_word = group_by_keys(str.split, sentences)

group_values (seq)
Groups values of (key, wvalue) pairs. May think of it like dict () but collecting collisions:

’group_values(keep(r'Aff(\w+):(.+)', sys.argv))

partition (n[, step], seq)

ipartition (n[, step], seq)
Returns a list of lists of n items each, at offsets step apart. If step is not supplied, defaults to n, i.e. the
partitions do not overlap. Returns only full length-n partitions, in case there are not enough elements for last
partition they are ignored.

Most common use is deflattening data:

Make a dict from flat 1list of pairs
dict (ipartition (2, flat_list_of_pairs))

(continues on next page)

5.5. Split and chunk 19

https://docs.python.org/2/library/collections.html#collections.defaultdict
https://docs.python.org/2/library/itertools.html#itertools.groupby
https://docs.python.org/2/library/collections.html#collections.defaultdict

funcy documentation, Release 1.10.3

(continued from previous page)

Structure user credentials
{id: (name, password) for id, name, password in ipartition(3, users)}

A three argument variant of partition () canbe used to process sequence items in context of their neighbors:

Smooth data by averaging out with a sliding window
[sum(window) / n for window in ipartition(n, 1, data_points)]

Also look at pairwise () for similar use. Other use of partition () is processing sequence of data ele-
ments or jobs in chunks, but take a look at chunks () for that.

chunks (n[, step], seq)
ichunks (n[, step], seq)
Returns a list of lists like partition (), but may include partitions with fewer than n items at the end:

chunks (2, 'abcde')
7> [!abY, 'Cd', IeI])

chunks (2, 4, 'abcde')
> ['ab’', 'e'])

Handy for batch processing.

partition_by (f, seq)
ipartition_by (f, seq)
Partition seq into list of lists or iterator of iterators splitting at £ (item) change.

5.6 Data handling

distinct (seq, key=identity)

idistinct (seq, key=identity)
Returns unique items of the sequence with order preserved. If key is supplied then distinguishes values by
comparing their keys.

Note: Elements of a sequence or their keys should be hashable.

with_prev (seq, fill=None)

Returns an iterator of a pair of each item with one preceding it. Yields fill or None as preceding element for first
item.

Great for getting rid of clunky prev housekeeping in for loops. This way one can indent first line of each
paragraph while printing text:

for line, prev in with_prev(text.splitlines()):
if not prev:
print ' 'y
print line

Use pairwise () toiterate only on full pairs.

with_next (seq, fill=None)
Returns an iterator of a pair of each item with one next to it. Yields fill or None as next element for last item.
See also with _prev () and pairwise ().

20 Chapter 5. Sequences

funcy documentation, Release 1.10.3

pairwise (seq)
Yields pairs of items in seq like (item0, iteml), (iteml, item2), A greatway to process
sequence items in a context of each neighbor:

Check if seq is non-descending
all(left <= right for left, right in pairwise (seq))

count_by (f, seq)
Counts numbers of occurrences of values of £ on elements of seq. Returns defaultdict (int) of counts.

Calculating a histogram is one common use:

Get a length histogram of given words
count_by (len, words)

count_reps (seq)
Counts number of repetitions of each value in seqg. Returns defaultdict (int) of counts. This is faster
and shorter alternative to count_by (identity, ...)

reductions (f, seq[, acc])
ireductions (f, seq[, acc |)

Returns a sequence of the intermediate values of the reduction of seq by £. In other words it yields a sequence
like:

reduce (f, seq[:1], [acc]), reduce(f, seql[:2], [acc]),

You can use sums () or isums () for a common use of getting list of partial sums.

sums (seq[, acc])
isums (seq|, acc |)
Same as reductions () or ireductions () with reduce function fixed to addition.

Find out which straw will break camels back:

first (i for i, total in enumerate (isums (straw_weights))
if total > camel_toughness)

5.6. Data handling 21

https://docs.python.org/2/library/collections.html#collections.defaultdict
https://docs.python.org/2/library/collections.html#collections.defaultdict

funcy documentation, Release 1.10.3

22 Chapter 5. Sequences

CHAPTER O

Collections

6.1 Unite

merge (*colls)
Merges several collections of same type into one: dicts, sets, lists, tuples, iterators or strings. For dicts values of
later dicts override values of former ones with same keys.

Can be used in variety of ways, but merging dicts is probably most common:

def utility (x+options):
defaults = {...}
options = merge (defaults, options)

If you merge sequences and don’t need to preserve collection type, thenuse concat () or iconcat () instead.

join (colls)
Joins collections of same type into one. Same as merge (), but accepts iterable of collections.

Use cat () and icat () for non-type preserving sequence join.

6.2 Transform and select

All functions in this section support Extended function semantics.

walk (f, coll)
Returns a collection of same type as coll consisting of its elements mapped with the given function:

walk (inc, {1, 2, 3}) # —> (2, 3, 4}
walk (inc, (1, 2, 3)) # —> (2, 3, 4)

When walking dict, (key, value) pairs are mapped, i.e. this lines f1ip () dict:

23

funcy documentation, Release 1.10.3

swap = lambda (k, v): (v, k)
walk (swap, {1: 10, 2: 20})

walk () works with strings too:

walk (lambda x: x = 2, 'ABC'") # —-> 'AABBCC'
walk (compose (str, ord), 'ABC') # -> '656667"'

One should probably use map () or imap () when doesn’t need to preserve collection type.

walk_keys (f, coll)

Walks keys of coll, mapping them with the given function. Works with mappings and collections of pairs:

walk_keys (str.upper, {'a': 1, 'b': 2}) # {('A': 1, 'B': 2}

walk_keys (int, json.loads (some_dict)) # restore key type lost in translation

Important to note that it preserves collection type whenever this is simple dict, defaultdict,

OrderedDict or any other mapping class or a collection of pairs.

walk_values (f, coll)

Walks values of coll, mapping them with the given function. Works with mappings and collections of pairs.

Common use is to process values somehow:

clean_values = walk_values (int, form_values)
sorted_groups = walk_values (sorted, groups)
Hint: you can use partial (sorted, key=...) instead of sorted () to sort in non-default way.

Note that walk_values () has special handling for defaultdicts. It constructs new one with values
mapped the same as for ordinary dict, but a default factory of new defaultdict would be a composition of

f and old default factory:

d = defaultdict (lambda: 'default', a='hi', b='bye')
walk_values (str.upper, d)
—-> defaultdict (lambda: 'DEFAULT', a='HI', b='BYE')

select (pred, coll)

Filters elements of coll by pred constructing a collection of same type. When filtering a dict pred re-
ceives (key, wvalue) pairs. See select_keys () and select_values () to filter it by keys or values

respectively:

select (even, {1, 2, 3, 10, 20})
-> {2, 10, 20}

select (lambda (k, v): k == v, {1: 1, 2: 3})
—> {1: 1}

select_keys (pred, coll)
Select part of a dict or a collection of pairs with keys passing the given predicate.

This way a public part of instance attributes dictionary could be selected:

is_public = complement (re_tester('"_"))
public = select_keys (is_public, instance. dict_)

select_values (pred, coll)
Select part of a dict or a collection of pairs with values passing the given predicate.

24

Chapter 6

. Collections

https://docs.python.org/2/library/itertools.html#itertools.imap
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/collections.html#collections.defaultdict
https://docs.python.org/2/library/collections.html#collections.OrderedDict
https://docs.python.org/2/library/functions.html#sorted
https://docs.python.org/2/library/collections.html#collections.defaultdict

funcy documentation, Release 1.10.3

Strip falsy values from dict:

select_values (bool, some_dict)

compact (coll)
Removes falsy values from given collection. When compacting a dict all keys with falsy values are trashed.

Extract integer data from request:

’compact(walk_values(silent(int), request_dict))

6.3 Dict utils

merge_with (f, *dicts)
join_with (f, dicts)
Merge several dicts combining values for same key with given function:

merge_with(list, {1: 1}, {1: 10, 2: 2})
-> {(1: [1, 10], 2: [2]}

merge_with (sum, {1: 1}, {1: 10, 2: 2})
—> (1: 11, 2: 2}

join_with(first, ({n % 3: n} for n in range (100, 110)))
-> {(0: 102, 1: 100, 2: 101}

zipdict (keys, vals)

Returns a dict with the keys mapped to the corresponding vals. Stops pairing on shorter sequence end:

zipdict ("abcd', range(4))
-> {'a': 0, 'b': 1, 'c': 2, 'd': 3}

zipdict ('abc', count())
-—> {'a': 0, 'b': 1, 'c': 2}

£1lip (mapping)
Flip passed dict swapping its keys and values. Also works for sequences of pairs. Preserves collection type:

flip (OrderedDict (['aA', 'bB']))
-> OrderedDict ([('A’', 'a'), ('B', 'b')])

project (mapping, keys)
Returns a dict containing only those entries in mapping whose key is in keys.

Most useful to shrink some common data or options to predefined subset. One particular case is constructing a
dict of used variables:

merge (project (__builtins__, names), project(globals(), names))

omit (mapping, keys)
Returns a copy of mapping with keys omitted. Preserves collection type:

omit ({'a': 1, 'b': 2, 'c': 3}, 'Tac'")
> {'b': 2}

6.3. Dict utils 25

funcy documentation, Release 1.10.3

izip values (*dicts)

Yields tuples of corresponding values of given dicts. Skips any keys not present in all of the dicts. Comes in

handy when comparing two or more dicts:

max_change = max(abs(x - y) for x, y in izip_values(items, old_items))

izip dicts (*dicts)

Yields tuples like (key, wvaluel, value2, ...) foreachcommon key of all given dicts. A neat way to

process several dicts at once:

changed_items = [id for id, (new, old) in izip_dicts(items, old_items)
if abs(new - o0ld) >= PRECISION]

lines = {id: cnt x price for id, (cnt, price) in izip_dicts (amounts, prices)}

Seealso 1zip values ().

get_in (coll, path, default=None)
Returns a value corresponding to path in nested collection:

get_in({"a’: {Hbll: 42}}, [Hall, "b"]) # —> 42
get_in({"a': {"b": 42}}, ["C"], "fOO") # —> "foo"

set_in (coll, path, value)
Creates a nested collection with the value set at specified path. Original collection is not changed:

set_in({"a": {"b": 42}}, [uan, "b"], 10)
—> {"8”.’ {"b".’ 70}}

set_in({"a": {"b": 42}}, [uan, "C"], 10)
—> {"EJI".’ {an: 47, mem. 70}}

update_in (coll, path, update, default=None)
Creates a nested collection with a value at specified path updated:

update_in({"a": {}}, ["a", "cnt"], inc, default=0)
-> ("a": ("cnt": 1}}

6.4 Data manipulation

where (mappings, **cond)
iwhere (mappings, **cond)

Looks through each value in given sequence of dicts, returning a list or an iterator of all the dicts that contain all

key-value pairs in cond:

where (plays, author="Shakespeare", year=1611)
=> [{"title": "Cymbeline", "author": "Shakespeare", "year": 1611},
{"title": "The Tempest", "author": "Shakespeare", "year": 1611}]

Iterator version could be used for efficiency or when you don’t need the whole list. E.g. you are looking for the

first match:

first (iwhere (plays, author="Shakespeare"))
=> {("title": "The Two Gentlemen of Verona", ...}

26 Chapter 6. Collections

funcy documentation, Release 1.10.3

pluck (key, mappings)
ipluck (key, mappings)
Returns a list or an iterator of values for key in each mapping in the given sequence. Essentially a shortcut for:

map (operator.itemgetter (key), mappings)

pluck_attr (attr, objects)
ipluck_attr (attr, objects)
Returns a list or an iterator of values for at t r in each object in the given sequence. Essentially a shortcut for:

’map(operator.attrgetter(attr), objects)

Useful when dealing with collections of ORM objects:

users = User.query.all()
ids = pluck_attr('id', users)

invoke (objects, name, *args, **kwargs)
iinvoke (objects, name, *args, **kwargs)
Calls named method with given arguments for each object in ob ject s and returns a list or an iterator of results.

6.5 Content tests

is_distinct (coll, key=identity)
Checks if all elements in the collection are different:

’assert is_distinct (field_names), "All fields should be named differently"

Uses key to differentiate values. This way one can check if all first letters of words are different:

is_distinct (words, key=0)

all ([pred], seq)
Checks if pred holds every element in a seq. If pred is omitted checks if all elements of seq are truthy
(which is the same as in built-in al11 ()):

they_are_ints = all(is_instance(n, int) for n in seq)
they_are_even = all(even, seq)

Note that, first example could be rewritten using isa () like this:

’they_are_ints = all(isa(int), seq)

any ([pred], seq)
Returns True if pred holds for any item in given sequence. If pred is omitted checks if any element of seq
is truthy.

Check if there is a needle in haystack, using extended predicate semantics:

’any(r'needle', haystack_strings)

none ([pred], seq)
Checks if none of items in given sequence pass pred or is truthy if pred is omitted.

Just a stylish way to write not any (...):

6.5. Content tests 27

funcy documentation, Release 1.10.3

’assert none (' ' in name for name in names), "Spaces in names not allowed"

one ([pred], seq)

Returns true if exactly one of items in seq passes pred. Cheks for truthiness if pred is omitted.

some ([pred], seq)

Finds first item in seq passing pred or first that is true if pred is omitted.

6.6 Low-level helpers

empty (coll)

Returns an empty collection of the same type as coll.

iteritems (coll)

Returns an iterator of items of a coll. This means key, value pairs for any dictionaries:

list (iteritems ({1, 2, 42}))
-> [1, 42, 2]

list (iteritems({'a': 11}))
> [('a', 1)]

itervalues (coll)

Returns an iterator of values of a coll. This means values for any dictionaries and just elements for other
collections:

list (itervalues ({1, 2, 421}))
-> [1, 42, 2]

list (itervalues({'a': 1}))
> [1]

28

Chapter 6. Collections

CHAPTER /

Functions

identity (x)
Returns its argument.

constantly (x)
Returns function accepting any args, but always returning x.

caller (*args, **kwargs)
Returns function calling its argument with passed arguments.

partial (func, *args, **kwargs)
Returns partial application of func. A re-export of functools.partial (). Can be used in a variety of
ways. DSLs is one of them:

field = dict
json_field = partial (field, json=True)

rpartial (func, *args)
Partially applies last arguments in func:

from operator import div
one_third = rpartial(div, 3.0)

Arguments are passed to func in the same order as they came to rpartial ():

separate_a_word = rpartial (str.split, ' ', 1)

func_partial (func, *args, **kwargs)
Like partial () butreturns a real function. Which is useful when, for example, you want to create a method
of it:

setattr(self, 'get_%¢s_display' % field.name, func_partial (_get_FIELD_display, .,
—~field))

Note: use partial () if you are ok to get callable object instead of function as it’s faster.

29

https://docs.python.org/2/library/functools.html#functools.partial

funcy documentation, Release 1.10.3

curry (func[, n])
Curries function. For example, given function of two arguments £ (a, b) returns function:

’1ambda a: lambda b: f(a, b)

Handy to make a partial factory:

make_tester = curry(re_test)
is_word = make_tester (r'"\w+$'")
is_int = make_tester(r'"[1-9]\dxS$")

Butsee re_tester () if you really need this.

rcurry (ﬁmc[, n])
Curries function from last argument to first:

has_suffix = rcurry(str.endswith)
filter (has_suffix("ce"), ["nice", "cold", "ice"])
—> ["nice", "ice"]

Can fix number of arguments when it’s ambiguous:

to_power = rcurry(pow, 2) # curry 2 first args in reverse order
to_square = to_power (2)
to_cube = to_power (3)

autocurry (func)
Constructs a version of func returning its partial applications until sufficient arguments are passed:

def remainder (what, by):
return what % by

rem = autocurry(remainder)
assert rem (10, 3) == rem(10) (3) == rem() (10, 3) == 1
assert map (rem(by=3), range(5)) == [0, 1, 2, 0, 1]

Can clean your code a bit when partial () makes it too cluttered.

compose (*f¥)
Returns composition of functions:

extract_int = compose (int, r'\d+')

Supports Extended function semantics.

rcompose (*fs)
Returns composition of functions, with functions called from left to right. Designed to facilitate transducer-like
pipelines:

Note the use of iterator function variants everywhere
process = rcompose (

partial (iremove, is_useless),

partial (imap, process_row),

partial (ichunks, 100)

for chunk in process (data):
write_chunk_to_db (chunk)

30 Chapter 7. Functions

funcy documentation, Release 1.10.3

Supports Extended function semantics.

juxt (*f)

ijuxt (*fs)
Takes several functions and returns a new function that is the juxtaposition of those. The resulting function takes
a variable number of arguments, and returns a list or iterator containing the result of applying each function to
the arguments.

iffy([pred] , action [, default=identity])
Returns function, which conditionally, depending on pred, applies action or default. If default is not
callable then it is returned as is from resulting function. E.g. this will call all callable values leaving rest of them
as is:

’map(iffy(callable, caller()), values)

Common use it to deal with messy data:

dirty_data = ['hello', None, 'bye']
map(iffy(len), dirty_data) # => [5, None, 3]
map (iffy(isa(str), len, 0), dirty_data) # => [5, 0, 3], also safer

7.1 Function logic

This family of functions supports creating predicates from other predicates and regular expressions.

complement (pred)
Constructs a negation of pred, i.e. a function returning a boolean opposite of original function:

is_private = re_tester(r'”_")
is_public = complement (is_private)
or just
is_public = complement (r'"_")
all_f£fn (*fs)
any_ fn (*fs)

none_ fn (*fs)

one_fn (*fs)
Construct a predicate returning True when all, any, none or exactly one of fs return True. Support short-
circuit behavior.

is_even_int = all_fn(isa(int), even)

some_fn (*fs)
Constructs function calling £s one by one and returning first true result.

Enables creating functions by short-circuiting several behaviours:

get_amount = some_fn (
lambda s: 4 if 'set of' in s else None,
r' (\d+) wheels?',
compose ({'one': 1, 'two': 2, 'pair': 2}, r'(\w+) wheels?')

If you wonder how on Earth one can compose () dict and string see Extended function semantics.

7.1. Function logic 31

funcy documentation, Release 1.10.3

32 Chapter 7. Functions

CHAPTER 8

Decorators

@decorator
Transforms a flat wrapper into a decorator with or without arguments. @decorator passes special call
object as a first argument to a wrapper. A resulting decorator will preserve function module, name and docstring.
It also adds __wrapped___ attribute referring to wrapped function and __original___ attribute referring to
innermost wrapped one.

Here is a simple logging decorator:

@decorator

def log(call):
print call._func. name , call._args, call._kwargs
return call ()

call object also supports by name arg introspection and passing additional arguments to decorated function:

@decorator

def with_phone(call):
call.request gets actual request value upon function call
request = call.request
#o...
phone = Phone.objects.get (number=request.GET['phone'])
phone arg is added to xargs passed to decorated function
return call (phone)

@with_phone

def some_view (request, phone):
... some code using phone
return #

A better practice would be adding keyword argument not positional. This makes such decorators more compos-
able:

@decorator
def with_phone(call):

(continues on next page)

33

funcy documentation, Release 1.10.3

(continued from previous page)

#
return call (phone=phone)

@decorator
def with_user(call):
¥

return call (user=user)

@with_phone

@with_user

def some_view (request, phone=None, user=None) :
¥

return #

If a function wrapped with @decorator has arguments other than call, then decorator with arguments is
created:

@decorator
def joining(call, sep):
return sep.join(call())

You can see more examples in £1ow and debug submodules source code.

@contextmanager (func)

A decorator helping to create context managers. Resulting functions also behave as decorators.

A simple example:

@contextmanager

def tag(name) :
print "<%s>" % name,
yield
print "</%s>" % name

with tag("hl"):
print "foo",
—> <hl> foo </hl>

Using as decorator:

@Qtag('strong')
def shout (text) :
print text.upper ()

shout ('hooray")
—> HOORAY

@wraps (wrapped [, assigned] [, updated])

An utility to pass function metadata from wrapped function to a wrapper. Copies all function attributes including
__name__,__module__and __ _doc__.

In addition adds __wrapped___ attribute referring to the wrapped function and __original___ attribute
referring to innermost wrapped one.

Mostly used to create decorators:

34

Chapter 8. Decorators

funcy documentation, Release 1.10.3

def some_decorator (func) :
@wraps (func)
def wrapper (xargs, xxkwargs):
do_something (xargs, =x+xkwargs)
return func(xargs, =**kwargs)

But see also @decorator for that. This is extended version of functools.wraps ().

unwrap (func)
Get the object wrapped by func.

Follows the chain of __wrapped___ attributes returning the last object in the chain.
This is a backport from python 3.4.

class ContextDecorator
A base class or mixin that enables context managers to work as decorators.

35

https://docs.python.org/3/library/functools.html#functools.wraps

funcy documentation, Release 1.10.3

36 Chapter 8. Decorators

CHAPTER 9

Flow

@silent
Ignore all real exceptions (descendants of Except ion). Handy for cleaning data such as user input:

brand_id = silent (int) (request.GET['brand_id'])
ids = keep(silent (int), request.GET.getlist ('id'))

And in data import/transform:

get_greeting = compose (silent (string.lower), re_finder (r' (\w+)!"))
map (get_greeting, ['a!', ' B!', 'c.'])
-> ['a', 'b', None]

Note: Avoid silencing non-primitive functions, use @ignore () instead and even then be careful not to
swallow exceptions unintentionally.

@ignore (errors, default=None)
Same as @silent, but able to specify errors to catch and default to return in case of error caught.
errors can either be exception class or tuple of them.

suppress (*errors)
A context manager which suppresses given exceptions under its scope:

with suppress (HttpError) :
Assume this request can fail, and we are ok with it
make_http_request ()

@once

@once_per_args

@once_per (*argnames)
Call function only once, once for every combination of values of its arguments or once for every combination
of given arguments. Thread safe. Handy for various initialization purposes:

37

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

funcy documentation, Release 1.10.3

Global initialization

@once

def initialize_cache() :
conn some.Connection(...)
... set up everything

Per argument initialization
@Qonce_per_args
def initialize_language (lang) :
conf load_language_conf (lang)
... set up language

Setup each class once
class SomeManager (Manager) :
@once_per('cls"')
def _initialize_class(self, cls):
pre_save.connect (self._pre_save, sender=cls)
... set up signals, no dups

raiser (exception_or_class=Exception, *args, **kwargs)

Constructs function that raises given exception with given arguments on any invocation.

Qreraise (errors, into)

Intercepts any error of errors classes and reraises it as into error. Can be used as decorator or context
manager:

@reraise (requests.RequestsError, MyAPIError)
def api_call(...):
#

@Qretry (tries, errors=Exception, timeout=0)

Every call of the decorated function is tried up to t ries times. The first attempt counts as a try. Retries occur
when any subclass of errors israised (errors can be an exception class or a list/tuple of exception classes).
There will be a delay in t imeout seconds between tries.

A common use is to wrap some unreliable action:

@retry (3, errors=HttpError)
def download_image (url) :
... make http request
return image

You can pass callable as t imeout to achieve exponential delays or other complex behavior:

@retry (3, errors=HttpError, timeout=lambda a: 2 *»* a)
def download_image (url) :

... make http request

return image

fallback (*approaches)

Tries several approaches until one works. Each approach is either callable or a tuple (callable, errors),
where errors is an exception class or a tuple of classes, which signal to fall back to next approach. If errors
is not supplied then fall back is done for any Exception:

fallback (
(partial (send_mail, ADMIN_EMAIL, message), SMIPException),
partial (log.error, message),

(continues on next page)

38

Chapter 9. Flow

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

funcy documentation, Release 1.10.3

(continued from previous page)

raiser (FeedbackError, "Unable to notify admin™)

limit_error_rate (fails, timeout, exception=ErrorRateExceeded)
If function fails to complete fails times in a row, calls to it will be intercepted for timeout with
exception raised instead. A clean way to short-circuit function taking too long to fail:

@limit_error_rate(fails=5, timeout=60, exception=RequestError ('Temporary,,
—unavailable'))
def do_request (query) :

... make a http request

return data

Can be combined with ignore () to silently stop trying for a while:

@ignore (ErrorRateExceeded, default={'id': None, 'name': 'Unknown'})
@limit_error rate(fails=5, timeout=60)
def get_user (id):

... make a http request

return data

@collecting
Transforms generator or other iterator returning function into list returning one.

Handy to prevent quirky iterator-returning properties:

@property
@Qcollecting
def path_up(self):
node = self
while node:
yield node
node = node.parent

Also makes list constructing functions beautifully yielding.

@joining (sep)
Wraps common python idiom “collect then join” into a decorator. Transforms generator or alike into function,
returning string of joined results. Automatically converts all elements to separator type for convenience.

Goes well with generators with some ad-hoc logic within:

@joining (', ")
def car_desc(self):
yield self.year_made

if self.engine_volume: yield ' cc' % self.engine_volume
if self.transmission: yield self.get_transmission_display()
if self.gear: yield self.get_gear_display()

#

Use unicode separator to get unicode result:

@joining(u', ")

def car_desc(self):
yield self.year_made
#

See also str_join().

39

funcy documentation, Release 1.10.3

@post_processing (func)

Passes decorated function result through func. This is the generalization of @collecting and
@joining (). Could save you writing a decorator or serve as extended comprehensions:

@post_processing (dict)
def make_cond(request) :
if request.GET['new']:
yield 'year_ gt', 2000
for key, value in request.GET.items () :
if value == '"':
continue

40

Chapter 9. Flow

cHAaPTER 10

String utils

re_find (regex, s, flags=0)

Finds regex in s, returning the match in the simplest possible form guessed by captures in given regular

expression:

Captures

Return value

no captures

a matched string

single positional capture

a substring matched by capture

only positional captures

a tuple of substrings for captures

only named captures

a dict of substrings for captures

mixed pos/named captures

a match object

Returns None on mismatch.

Find first number in a line
silent (int) (re_find(r'\d+', line))

Find number of men in a line
re_find(r' (\d+) m[ae]ln', line)

Parse uri into nice dict

re_find (r'”~/post/ (?P<id>\d+) / (?P<action>\w+)$', uri)

re_test (regex, s, flags=0)
Tests whether regex can be found in s.

re_all (regex, s, flags=0)
re_iter (regex, s, flags=0)

Returns a list or iterator of all matches of regex in s. Matches are presented in most simple form possible, see

table in re_find () docs.

dict (re_iter (' (\w+)=(\w+) ', ini_text))

A fast and dirty way to parse ini section into dict

41

funcy documentation, Release 1.10.3

re_finder (regex, flags=0)
Returns a function that calls re find () for it’s sole argument. It’s main purpose is quickly constructing
mapper functions for map () and friends.

See also Extended function semantics.

re_tester (regex, flags=0)
Returns a function that calls re_test () forit’s sole argument. Aimed at quick construction of predicates for
usein filter () and friends.

See also Extended function semantics.

str_join([sep:””], seq)
Joins sequence with sep. Same as sep. join (seq), but forcefully converts all elements to separator type,
str by default.

See also joining ().

cut_prefix (s, prefix)
Cuts prefix from given string if it’s present.

cut_suffix (s, suffix)
Cuts suffix from given string if it’s present.

42 Chapter 10. String utils

cHAPTER 11

Calculation

@memoize (key_func=None)
Memoizes decorated function results, trading memory for performance. Can skip memoization for failed calcu-
lation attempts:

@memoize # Omitting parentheses is ok
def ip_to_city(ip):
try:
return request_city_from_slow_service (ip)
except NotFound:

return None # return None and memoize 1t
except Timeout:
raise memoize.skip (CITY) # return CITY, but don't memoize it

Additionally @memoize exposes its memory for you to manipulate:

Prefill memory
ip_to_city.memory.update ({...})

Forget everything
ip_to_city.memory.clear ()

Custom key_func could be used to work with unhashable objects, insignificant arguments, etc:

@memoize (key_func=lambda obj, verbose=None: obj.key)
def do_things (obj, verbose=False) :
#

@make_lookuper
As @memoi ze, but with prefilled memory. Decorated function should return all available arg-value pairs, which
should be a dict or a sequence of pairs. Resulting function will raise LookupError for any argument missing
init:

43

funcy documentation, Release 1.10.3

@make_lookuper
def city_location():
return {row['city']: row['location'] for row in fetch_city_locations()}

If decorated function has arguments then separate lookuper with its own lookup table is created for each combi-
nation of arguments. This can be used to make lookup tables on demand:

@make_lookuper
def function_lookup (f):
return {x: f(x) for x in range (100)}

fast_sin = function_lookup (math.sin)
fast_cos = function_lookup (math.cos)

Or load some resources, memoize them and use as a function:

@make_lookuper
def translate(lang):
return make_list_of_pairs(load_translation_file(lang))

russian_phrases = map (translate('ru'), english_phrases)

@silent_lookuper

Same as @make_lookuper, but returns None on memory miss.

@cache (timeout, key_func=None)

Caches decorated function results for timeout. It can be either number of seconds or datetime.
timedelta

@cache (60 * 60)
def api_call (query) :
#

Cache can be invalidated before timeout with:

api_call.invalidate (query) # Forget cache for query
api_call.invalidate_all() # Forget everything

Custom key_ func could be used same way as in @memo1i ze:

Do not use token in cache key
@cache (60 * 60, key_func=lambda query, token=None: query)
def api_call (query, token=None) :

#

44

Chapter 11. Calculation

https://docs.python.org/2/library/datetime.html#datetime.timedelta
https://docs.python.org/2/library/datetime.html#datetime.timedelta

cHAPTER 12

Type testing

isa (*types)
Returns function checking if its argument is of any of given types.

Split labels from ids:

labels, ids = split(isa(str), values)

is_mapping (value)
is_set (value)
is_1list (value)
is_tuple (value)
is_seq (value)
is_iter (value)
These functions check if value is Mapping, Set, 1ist, tuple, Sequence or iterator respectively.

is_seqcoll (value)
Checks if value is a list or a tuple, which are both sequences and collections.

is_seqcont (value)
Checks if value is a list, a tuple or an iterator, which are sequential containers. It can be used to distinguish
between value and multiple values in dual-interface functions:

def add_to_selection(view, region):
if is_seqcont (region) :
A sequence of regions
view.sel () .add_all (region)
else:
view.sel () .add(region)

iterable (value)
Tests if value is iterable.

45

funcy documentation, Release 1.10.3

46 Chapter 12. Type testing

cHAPTER 13

Objects

@cached property

Creates a property caching its result. One can rewrite cached value simply by assigning property. And clear
cache by deleting it.

A great way to lazily attach some data to an object:

class MyUser (AbstractBaseUser) :
@cached_property
def public_phones(self):
return list (self.phones.filter (confirmed=True, public=True))

@monkey (cls_or_module, name=None)
Monkey-patches class or module by adding decorated function or property to it named name or the same

as decorated function. Saves overwritten method to original attribute of decorated function for a kind of
inheritance:

A simple caching of all get requests,

even for models for which you can't easily change Manager
@monkey (QuerySet)

def get(self, *args, =xxkwargs):

if not args and list (kwargs) == ['pk']:
cache_key = ' : ' % (self.model, kwargs['pk'])
result = cache.get (cache_key)

if result is None:
result = get.original (self, =xargs, =*=*kwargs)
cache.set (cache_key, result)
return result
else:

return get.original (self, *args, =**kwargs)

class namespace
A base class that prevents its member functions turning into methods:

47

funcy documentation, Release 1.10.3

class Checks (namespace) :
is_str = lambda value: isinstance (value, str)
max_len = lambda 1: lambda value: len(value) <= 1

field_checks = all_fn(Checks.is_str, Checks.max_len (30))

class LazyObject (init)

Creates a object only really setting itself up on first attribute access. Since attribute access happens immediately
before any method call, this permits delaying initialization until first call:

@QLazyObject
def redis_client () :
if isinstance(settings.REDIS, str):
return StrictRedis.from_url (settings.REDIS)
else:
return StrictRedis (x*settings.REDIS)

Will be only created on first use
redis_client.set (...)

48

Chapter 13. Objects

cHAPTER 14

Debugging

tap (value, label=None)

Prints value and then returns it. Useful to tap into some functional pipeline for debugging:

fields = (f for f in fields_for (category) if section in tap(tap(f) .sections))
... do something with fields

If 1abel is specified then it’s printed before corresponding value:

squares = {tap(x, 'x'): tap(x » x, 'x"2') for x in [3, 4]}
x: 3

x"2: 9

x: 4

x"2: 16

=> (3: 9, 4: 16}

@log_calls (print_func, errors=True, stack=True, repr_len=25)
@print_calls (errors=True, stack=True, repr_len=25)

Will log or print all function calls, including arguments, results and raised exceptions. Can be used as decorator
or tapped into call expression:

sorted_fields = sorted(fields, key=print_calls(lambda f: f.order))

If errors is set to False then exceptions are not logged. This could be used to separate channels for normal
and error logging:

@log _calls(log.info, errors=False)
@log _errors (log.exception)
def some_suspicious_function(...):
#
return result

@log_enters (print_func, repr_len=25)
print_enters|[(repr_len=25)]
@log_exits (print_func, errors=True, stack=True, repr_len=25)

49

funcy documentation, Release 1.10.3

@print_exits (errors=True, stack=True, repr_len=25)

Will log or print every time execution enters or exits the function. Should be used same way as @1og_calls ()
and @print_calls () when you need to track only one event per function call.

@log_errors (print_func, label=None, stack=True, repr_len=25)
@print_errors (label=None, stack=True, repr_len=25)

Will log or print all function errors providing function arguments causing them. If stack is set to False then
each error is reported with simple one line message.

Can be combined with @silent or @ignore () to trace occasionally misbehaving function:

@silent

@log errors (logging.warning)

def guess_user_id(username) :
initial = first_guess (username)
#

Can also be used as context decorator:

with print_errors('initialization', stack=False):
load_this ()

load_that ()

#

SomeException: a bad thing raised in initialization

@log_durations (print_func, label=None, unit="auto’, threshold=None, repr_len=25)
@print_durations (label=None, unit="auto’, threshold=None, repr_len=25)

Will time each function call and log or print its duration:

@log _durations (logging.info)
def do_hard_work (n) :
samples = range (n)

#

121 ms in do_hard work (10)
143 ms in do_hard work (11)
#

A block of code could be timed with a help of context manager:

with print_durations ('Creating models'):
Model.objects.create(...)
#

10.2 ms in Creating models

unit argumentcanbesetto 'ns', 'mks', 'ms' or 's' to use uniform time unit. If threshold is set then
durations under this number of seconds are not logged. Handy to capture slow queries or API calls:

@log _durations (logging.warning, threshold=0.5)
def make_query(sgl, params) :
#

log_iter_durations (seq, print_func, label=None, unit="auto’)
print_iter_ durations (seq, label=None, unit="auto’)

Wraps iterable seq into generator logging duration of processing of each item:

50

Chapter 14. Debugging

funcy documentation, Release 1.10.3

for item in print_iter_durations(seq, label='hard work'):
do_smth (item)

121 ms in iteration 0 of hard work
143 ms in iteration 1 of hard work
#

unit canbesetto 'ns', 'mks', 'ms'or 's"'.

51

funcy documentation, Release 1.10.3

52 Chapter 14. Debugging

cHAPTER 15

Primitives

isnone (x)
Checks if x is None. Handy with filtering functions:

remove (isnone, list_of_dirty_data) ‘

Plays nice with silent (), which returns None on fail:

remove (isnone, imap(silent (int), strings_with_numbers)) ‘

Note that it’s usually simpler to use keep () or compact () if you don’t need to distinguish between None
and other falsy values.

notnone (x)
Checks if x is not None. A shortcut for complement (isnone) meant to be used when bool is not specific
enough. Compare:

select_values (notnone, data_dict) # removes None values
compact (data_dict) # removes all falsy values

inc (x)
Increments its argument by 1.

dec (x)
Decrements its argument by 1.

even (x)
Checks if x is even.

odd (x)
Checks if x is odd.

Essays:
e Why Every Language Needs Its Underscore
* Functional Python Made Easy

53

http://hackflow.com/blog/2014/06/22/why-every-language-needs-its-underscore/
http://hackflow.com/blog/2013/10/13/functional-python-made-easy/

funcy documentation, Release 1.10.3

* Abstracting Control Flow
¢ Painless Decorators

You can also look at the code or create an issue.

54 Chapter 15. Primitives

http://hackflow.com/blog/2013/10/08/abstracting-control-flow/
http://hackflow.com/blog/2013/11/03/painless-decorators/
https://github.com/Suor/funcy
https://github.com/Suor/funcy/issues?state=open

Python Module Index

funcy, 33

55

funcy documentation, Release 1.10.3

56 Python Module Index

Index

A

all() (built-in function), 27
all_fn() (built-in function), 31
any() (built-in function), 27
any_fn() (built-in function), 31
autocurry() (built-in function), 30

B

butlast() (built-in function), 15

C

cache() (built-in function), 44
cached_property() (built-in function), 47
caller() (built-in function), 29

cat() (built-in function), 16

chunks() (built-in function), 20
collecting() (built-in function), 39
compact() (built-in function), 25
complement() (built-in function), 31
compose() (built-in function), 30
concat() (built-in function), 16
constantly() (built-in function), 29
ContextDecorator (class in funcy), 35
contextmanager() (in module funcy), 34
count() (built-in function), 13
count_by() (built-in function), 21
count_reps() (built-in function), 21
curry() (built-in function), 29
cut_prefix() (built-in function), 42
cut_suffix() (built-in function), 42
cycle() (built-in function), 14

D

dec() (built-in function), 53
decorator() (in module funcy), 33
distinct() (built-in function), 20
drop() (built-in function), 14
dropwhile() (built-in function), 19

E

empty() (built-in function), 28
even() (built-in function), 53

F

fallback() (built-in function), 38
filter() (built-in function), 17

first() (built-in function), 15
flatten() (built-in function), 16

flip() (built-in function), 25
func_partial() (built-in function), 29
funcy (module), 33

G

get_in() (built-in function), 26
group_by() (built-in function), 19
group_by_keys() (built-in function), 19
group_values() (built-in function), 19

icat() (built-in function), 16
ichunks() (built-in function), 20
iconcat() (built-in function), 16
identity() (built-in function), 29
idistinct() (built-in function), 20
iffy() (built-in function), 31
ifilter() (built-in function), 17
iflatten() (built-in function), 16
ignore() (built-in function), 37
iinvoke() (built-in function), 27
ijuxt() (built-in function), 31
ikeep() (built-in function), 17
ilen() (built-in function), 15
imap() (built-in function), 17
imapcat() (built-in function), 18
inc() (built-in function), 53
interleave() (built-in function), 16
interpose() (built-in function), 16
invoke() (built-in function), 27

57

funcy documentation, Release 1.10.3

ipartition() (built-in function), 19
ipartition_by() (built-in function), 20
ipluck() (built-in function), 26
ipluck_attr() (built-in function), 27
ireductions() (built-in function), 21
iremove() (built-in function), 17
is_distinct() (built-in function), 27
is_iter() (built-in function), 45
is_list() (built-in function), 45
is_mapping() (built-in function), 45
is_seq() (built-in function), 45
is_seqcoll() (built-in function), 45
is_seqcont() (built-in function), 45
is_set() (built-in function), 45
is_tuple() (built-in function), 45
isa() (built-in function), 45

isnone() (built-in function), 53
isplit() (built-in function), 18
isplit_at() (built-in function), 18
isplit_by() (built-in function), 18
isums() (built-in function), 21
iterable() (built-in function), 45
iterate() (built-in function), 14
iteritems() (built-in function), 28
itervalues() (built-in function), 28
itree_leaves() (built-in function), 16
itree_nodes() (built-in function), 16
iwhere() (built-in function), 26
iwithout() (built-in function), 18
izip_dicts() (built-in function), 26
izip_values() (built-in function), 25

J

join() (built-in function), 23
join_with() (built-in function), 25
joining() (built-in function), 39
juxt() (built-in function), 31

K

keep() (built-in function), 17

L

last() (built-in function), 15

LazyObject (built-in class), 48
limit_error_rate() (built-in function), 39
log_calls() (built-in function), 49
log_durations() (built-in function), 50
log_enters() (built-in function), 49
log_errors() (built-in function), 50
log_exits() (built-in function), 49
log_iter_durations() (built-in function), 50

M

make_lookuper() (built-in function), 43

map() (built-in function), 17
mapcat() (built-in function), 18
memoize() (built-in function), 43
merge() (built-in function), 23
merge_with() (built-in function), 25
monkey() (built-in function), 47

N

namespace (built-in class), 47
none() (built-in function), 27
none_fn() (built-in function), 31
notnone() (built-in function), 53
nth() (built-in function), 15

O

odd() (built-in function), 53

omit() (built-in function), 25

once() (built-in function), 37
once_per() (built-in function), 37
once_per_args() (built-in function), 37
one() (built-in function), 28

one_fn() (built-in function), 31

P

pairwise() (built-in function), 20
partial() (built-in function), 29
partition() (built-in function), 19
partition_by() (built-in function), 20
pluck() (built-in function), 26
pluck_attr() (built-in function), 27
post_processing() (built-in function), 40
print_calls() (built-in function), 49
print_durations() (built-in function), 50
print_errors() (built-in function), 50
print_exits() (built-in function), 49
print_iter_durations() (built-in function), 50
project() (built-in function), 25

R

raiser() (built-in function), 38
rcompose() (built-in function), 30
rcurry() (built-in function), 30
re_all() (built-in function), 41
re_find() (built-in function), 41
re_finder() (built-in function), 41
re_iter() (built-in function), 41
re_test() (built-in function), 41
re_tester() (built-in function), 42
reductions() (built-in function), 21
remove() (built-in function), 17
repeat() (built-in function), 13
repeatedly() (built-in function), 14
reraise() (built-in function), 38

58

Index

funcy documentation, Release 1.10.3

rest() (built-in function), 15
retry() (built-in function), 38
rpartial() (built-in function), 29

S

second() (built-in function), 15
select() (built-in function), 24
select_keys() (built-in function), 24
select_values() (built-in function), 24
set_in() (built-in function), 26
silent() (built-in function), 37
silent_lookuper() (built-in function), 44
some() (built-in function), 28
some_fn() (built-in function), 31
split() (built-in function), 18
split_at() (built-in function), 18
split_by() (built-in function), 18
str_join() (built-in function), 42
sums() (built-in function), 21
suppress() (built-in function), 37

T

take() (built-in function), 14
takewhile() (built-in function), 19
tap() (built-in function), 49
tree_leaves() (built-in function), 16
tree_nodes() (built-in function), 16

U

unwrap() (in module funcy), 35
update_in() (built-in function), 26

W

walk() (built-in function), 23
walk_keys() (built-in function), 24
walk_values() (built-in function), 24
where() (built-in function), 26
with_next() (built-in function), 20
with_prev() (built-in function), 20
without() (built-in function), 18
wraps() (in module funcy), 34

Z

zipdict() (built-in function), 25

Index

59

	Overview
	Cheatsheet
	Extended function semantics
	Python 3 support
	Sequences
	Collections
	Functions
	Decorators
	Flow
	String utils
	Calculation
	Type testing
	Objects
	Debugging
	Primitives
	Python Module Index

